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Abstract

The proper orthogonal decomposition method is used to obtain a low-dimensional model for the planar
non-linear dynamics of a horizontal fluid-conveying cantilever undergoing a limit cycle oscillation. The
finite-dimensional approximation of the non-linear partial differential equation (PDE) describing the
oscillation is carried out by a Galerkin projection scheme, using both the cantilever beam modes and proper
orthogonal modes (coherent structures) as projection bases, which leads to a finite set of coupled ordinary
differential equations. The proper orthogonal modes are obtained semi-analytically using the cantilever
beam modes as a basis. A systematic study is then carried out, focusing on the jumps in the linear stability
diagram of a horizontal fluid-conveying cantilever vis-"a-vis the order of the finite-dimensional model
obtained using either the beam modes or the proper orthogonal modes. Depending on the mass-ratio of the
cantilever, while the order of the finite-dimensional model using the beam-mode basis increases steadily (up
to 10), the corresponding order when the proper orthogonal modes are used to span the solution of the
PDE remains unaltered (only two).
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The linear dynamics of a cantilevered pipe conveying fluid is a classical problem of a gyroscopic
non-conservative system [1]. The system displays flutter instability by undergoing a Hopf
bifurcation resulting in limit-cycle oscillation [1–3]. In order to understand the non-linear
behaviour of the system, a consistent non-linear equation of motion accounting for the non-
linearity in the stiffness, inertia and damping terms, correct to third order was derived [4].
Theoretical analyses of different variants of the system were carried out [1–5]. The analysis using
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Galerkin projections with the beam modes as basis functions was restricted to low-dimensional
models only.

This paper continues the recent investigation [6,7] of the authors in order to obtain low-
dimensional models for the non-linear dynamics of a cantilever tube conveying fluid and
undergoing limit cycle oscillation in the post-flutter region. A Galerkin projection scheme with the
linear structural beam modes (also known as Fourier modes) as a basis is used to study a higher-
dimensional non-linear dynamical model of a fluid-conveying cantilever. The convergence of
the solution scheme of the non-linear PDE in relation to the number of terms retained in the
truncated series expansion is systematically studied. Subsequently, attention is focused on the
transition of the spatial coherent structures in the stability diagram of the pipe with respect to
the mass ratio of the fluid and pipe, in particular in the neighbourhood of the jumps as discussed
in Refs. [1,8]. It emerges that while only two dominant proper orthogonal modes can consistently
reproduce the dynamics of the PDE, increasingly higher number of beam modes becomes
necessary for higher mass ratio to capture the corresponding behaviour.

2. Mathematical model

The schematic diagram of the cantilever pipe under consideration is shown in Fig. 1. The
system consists of a tubular beam (pipe) of length L; internal cross-sectional area A; mass per unit
length m; flexural rigidity EI ; and coefficient of Kelvin–Voigt damping a; conveying fluid of mass
M per unit length, with an axial velocity U : The pipe, initially assumed to lie along the x-axis in
the direction of gravity, undergoes oscillation yðs; tÞ in the ðx; yÞ plane, where s is the curvilinear
co-ordinate. The centre-line of the pipe is assumed to be inextensible. Introducing the non-
dimensional quantities [1,4]
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Fig. 1. Schematic of the system.
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the equation of motion can be expressed in the following non-dimensional form:
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In physical terms, u is the non-dimensional fluid velocity, g represents the relative measure of
gravity to flexural forces, b is the ratio of the fluid mass to the total mass per unit length, and a is
the viscoelastic dissipation coefficient; the dot and prime denote derivatives with respect to the
non-dimensional time t and the non-dimensional curvilinear co-ordinate x; respectively.

The boundary conditions require the bending moment and shear force at the free end to be
zero, and likewise the displacement and slope at the clamped end, i.e., as shown in Ref. [4],

Zð0Þ ¼ Z0ð0Þ ¼ Z00ð1Þ ¼ Z000ð1Þ ¼ 0: ð3Þ

Thus, the boundary conditions with flowing fluid are identical to those for a ‘‘dry’’ cantilever.

3. Finite-dimensional representation

An analytical solution of the response field Zðx; tÞ is impossible to obtain. Consequently, a
finite-dimensional approximation of the solution is adopted by projecting Zðx; tÞ onto a time-
independent global basis which is given by a denumerable and complete set of orthogonal
functions in the solution space. One such basis consists of the eigenfunctions of a suitably chosen
linear self-adjoint differential operator which depends on the spatial domain and the boundary
conditions, e.g., in this case the cantilever beam eigenfunctions. The projection of the non-linear
PDE using the Galerkin approach onto these truncated basis functions leads to a finite set of
coupled non-linear ODEs which can capture the essential dynamics of the PDE with sufficient
accuracy in the regime of interest. However, the number of functions necessary in such a Galerkin
projection scheme to reproduce the original system behaviour crucially depends on the
appropriate choice of the basis functions. Generally, the basis functions are the normal modes
of the linear self-adjoint differential operator corresponding closely to the original non-linear
PDE. A Galerkin procedure employing any such set of basis functions ciðxÞ approximates the
non-linear PDE (having an infinite number of degrees of freedom) into a finite set of coupled
ODEs, with the solution of the original PDE in Eq. (2) being expressed as

Zðx; tÞ ¼
XN

i¼1

ciðxÞqiðtÞ; ð4Þ

where the ciðxÞ are the in vacuo cantilever beam eigenfunctions. Performing Galerkin projections,
the coupled ODEs corresponding to Eq. (2) are expressed as

.qi þ Cij ’qj þ Kijqj þ aijklqjqkql þ bijklqjqk ’ql þ gijklðqj ’qk ’ql þ qjqk .qlÞ ¼ 0: ð5Þ
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Assuming a steady flow ð ’u ¼ 0Þ; we obtain

Cij ¼ aaij þ 2
ffiffiffi
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In most of the work performed heretofore on this specific system, the cantilever beam modes are
used as a basis for the finite-dimensional approximation of the solution. Unfortunately, while the
choice of the cantilever beam modes as basis function may constitute an efficient finite
representation of a linear operator, the existence of non-linearities and flow effects in the PDE
generally undermines the efficacy of such a projection basis. Consequently, this approach leads to
a relatively high-dimensional representation of the non-linear PDE describing the dynamics of the
fluid-conveying cantilever. In the first instance, however, such an approach is adopted here to
solve the PDE, and convergence of the solution is studied in relation to the number of terms
retained in the expansion. This methodology will be referred to as the Fourier–Galerkin scheme in
what follows. The linear stability analysis can be carried out by studying the eigenvalues of the
linear system corresponding to non-linear ODEs,

.qi þ Cij ’qj þ Kijqj ¼ 0: ð11Þ

The onset of oscillatory instability or flutter, as exhibited by this specific system, is identified when
the imaginary part of any one of the complex eigenfrequencies becomes negative, inducing a
negative damping in the system.

4. Proper orthogonal modes: a semi-analytical solution

The dynamics of PDEs are often confined to attractor sets of relatively low dimension when the
solution co-ordinates are appropriately chosen. As mentioned before, the cantilever beam
eigenfunctions used as basis functions in the Fourier–Galerkin scheme do not contain any
information on any of the non-linear or flow-related aspects of the dynamics. Furthermore, by
using the cantilever beam eigenfunctions, even linear effects of flow velocity are not taken into
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account in the basis functions. Thus, the order of the system of ODEs obtained using the Fourier–
Galerkin approach is generally considerably larger than the intrinsic dimensionality of the
original PDE in certain regions of the parametric space. A logical question is then raised as to how
to incorporate the flow and non-linear features existing in the system in order to construct the
basis functions and to arrive at a low-dimensional model reflecting the true dimensionality of the
original PDE.

The proper orthogonal decomposition method appears to be an obvious choice. The
dimensionality and spatio-temporal complexities have successfully been studied using the proper
orthogonal decomposition method (PODM) for a wide variety of problems, e.g., Refs. [9–16]. The
method ‘‘optimally’’ extracts spatial information and identifies the dimensionality of a system
from a set of time-series data gathered from numerical simulations or physical experiments.1

The model reduction of the system is carried out next. Firstly, the traditional Fourier–Galerkin
scheme is used to obtain the converged solution of the original PDE. Secondly, an efficient POD
basis is constructed using the system response from the Fourier–Galerkin scheme, onto which the
original PDE is projected to obtain an alternative reduced order model [6,7].

We now briefly describe the PODM for the sake of completeness of the paper. The PODM
represents the time series uðx; tÞ with an optimal (in the mean-square sense) number of degrees of
freedom, where the basis vectors are obtained by solving the mean-square maximization problem
[9–16]

l ¼

R R
O/uðx; tÞ; uðy; tÞSCðxÞCðyÞ dx dyR

O CðxÞCðxÞ dx
; ð12Þ

/:S being the time-averaging operator and O is the spatial domain of integration. The
optimization problem finally yields an eigenvalue problem, stated as

CW ¼ lW; ð13Þ

where the time-averaged two-point correlation matrix is

Cij ¼ /uðxi; tÞuðxj; tÞS; ð14Þ

with W being a typical spatial coherent structure in the spatio-temporal records. The dominant
eigensubspace of the eigenvalue problem of the correlation matrix, determines the dominant
spatially coherent modes. An eigenvector W is referred to as the dominant coherent fluctuation or
proper orthogonal mode (POM), and l represents the amount of energy captured by the
corresponding mode. The correlation matrix being symmetric and positive-definite, the POMs
form a complete orthogonal basis which can represent the process uðx; tÞ: They are also optimal,2

in the sense that they capture more energy than any other set of basis functions, with a minimum
number of terms. The optimal system dimension N is determined as

PN
i¼1 li=

Pn
i¼1 liX99%; where

n is the order of the C matrix in Eq. (13) assuming the sufficiency of the POMs to capture 99
percent of the energy of the signal.
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In relation to the present study, the solution Zðx; tÞ of the PDE given by Eq. (2) will be
approximated using a Galerkin scheme with the POMs as basis, so as to arrive at an optimal low-
dimensional model of the attractor set. This approach will be referred to as POD-Galerkin scheme
in what follows.

The matrix eigenvalue problem stated in Eq. (13) may have large dimension depending on the
system characteristics and vibration response. A significant error can occur in the numerical
computation while solving such a large-scale eigenvalue problem. The numerical error occurring
in the process is propagated, or even magnified, while performing the differential or integral
operation on the numerically generated eigenvectors, as essentially required to derive the
discretized equation of motion using the Galerkin projection.

To circumvent the aforementioned limitations, a Galerkin projection scheme [6,7], in addition
to approximating the solution of the PDE, is adopted to solve the integral equation in Eq. (13). In
this approach, the proper orthogonal modes are projected on the cantilever beam modes as

CðxÞ ¼
XN

i¼1

aiciðxÞ: ð15Þ

Using the orthogonal properties of the beam modes, the Galerkin error minimization approach
leads to the following matrix eigenvalue problem:

Aa ¼ la; ð16Þ

where

Aij ¼ / *qiðtÞ *qjðtÞS: ð17Þ

Here *qi ¼ ðqi � qiÞ is the zero-mean response of ith generalized co-ordinate, with qi being its mean.
Note that the spatial dependency is removed from the eigenvalue problem in Eq. (6) through the
use of the orthonormal properties of the linear cantilever eigenmodes. The typical element Aij in
fact represents the correlation between the generalized co-ordinates qi and qj: In the present
context, the correlations among various generalized co-ordinates incorporate non-linear effects as
well as the effects of flow and gravity, including asymmetric gyroscopic features. Evidently, the
dimension of the reduced matrix-eigenvalue problem is much smaller in comparison to its full-
scale counterpart in Eq. (13); hence, numerical pollution of the eigenvectors is reduced in relation
to the full-scale eigenvalue problem.3 As mentioned before, the approach permits analytical
manipulations on the POMs which can be performed on the beam modes. When the POMs are
projected on the beam modes, the relative contributions of each beam mode in a dominant POM
also reflect the strength of flow and non-linear effects in the system.

5. A horizontal cantilever: jumps on the linear stability plot

Based on the aforementioned mathematical formulation, a numerical investigation is carried
out in this section for a fluid-conveying horizontal cantilever ðg ¼ 0Þ exploring the possibility of

ARTICLE IN PRESS

3For this particular problem, the total number of nodes [in the sense of Fig. 3(b), for instance] is not too large, and
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arriving at a reduced model of limit-cycle oscillation (LCO). The results of the linear analysis have
already been published [1]. The solutions of the set of non-linear ODEs are obtained by a finite
difference method based on Houbolt’s scheme [19], with a time-step size of 0.0001.

Fig. 2 shows the stability diagram constructed with a progressively higher number of modes in
the Fourier–Galerkin discretization [1,8]. Notice that not only does one not get the first ‘jump’
with N ¼ 2 and does so with N ¼ 3 or higher, but also N ¼ 4 is required to obtain the second
jump, N ¼ 5 to obtain the third one, and so on! Clearly, each jump is associated with activation of
another generalized co-ordinate, while the approximation prior to the jump is quite reasonable
without it [8].

In Fig. 3, the results corresponding to the case of the flow velocity u ¼ 6:68 for a fluid-
conveying cantilever with b ¼ 0:22 and a ¼ 0 is presented. The eigenvalue distribution of the
reduced matrix eigenvalue problem [see, Eq. (16)] is plotted in Fig. 3(a) with N ¼ 10: It is seen
that there are two dominant eigenvalues, indicating the fact that 2-d.o.f. POD-Galerkin scheme
can capture the essential dynamical behaviour of 10-d.o.f. Fourier–Galerkin model. The spatial
profiles of these dominant POMs are plotted in Fig. 3(b) along with the corresponding linear
normal modes. Figs. 3(c) and (d) show the bar chart of the first two eigenvectors of the reduced
eigenvalue problem, where the contribution of each beam mode on the POMs is identified.
Although the POMs show little difference compared to the cantilever beam modes in this case,
they still emerge as a superior basis for the reduced order model. Figs. 3(e) and (f) show the
snapshots of the spatial response of the cantilever at various time steps obtained by the 10-d.o.f.
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cantilever pipe with an increasing number of basis functions, N:

M.P. Pa.ıdoussis et al. / Journal of Sound and Vibration 280 (2005) 141–157 147



Fourier–Galerkin and 2-d.o.f. POD-Galerkin method. The spatial responses obtained using these
two methodologies show an excellent match, as expected. While only two POMs can adequately
capture the system dynamics, four beam modes are necessary for the same purpose as seen from
Figs. 3(c) and (d).

Similar results for the case of b ¼ 0:5 with u ¼ 10:6 are shown in Fig. 4. This case presents the
system behaviour just after the first jump in the stability diagram in Fig. 2. The optimal dimension
of the reduced order system is again two, as observed from the eigenvalue distribution of the
correlation matrix in Fig. 4(a). The corresponding spatial shapes of the dominant POMs along
with the corresponding normal modes are shown in Fig. 4(b). The POMs clearly exhibit noticeable
differences compared to the beam modes. In this case, however, six beam modes are necessary for
converged solution, as evidenced in Figs. 4(c) and (d). The spatial response profile obtained using
a 2-d.o.f. POD-Galerkin and a 10-d.o.f. Fourier–Galerkin scheme exhibit good agreement as
plotted in Figs. 4(e) and (f).

For b ¼ 0:6 and flow velocity u ¼ 11:5; which corresponds to the case just below the second
jump in the stability diagram in Fig. 2, the results are shown in Fig. 5. Except for slightly higher
contributions of the same beam modes in the POMs, the results for the eigenvalue spectrum,
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Fig. 3. The system with b ¼ 0:22; a ¼ 0 and u ¼ 6:68: (a) eigenvalue spectrum from semi-analytical approach; (b) first

and second POMs (—) and cantilever beam modes (-.-.-); bar chart of (c) first eigenvector; (d) second eigenvector;

temporal snapshots of spatial responses; (e) Fourier–Galerkin scheme with N ¼ 10; (f) POD-Galerkin approach with

N ¼ 2:
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POMs and corresponding response from Fourier–Galerkin and POD-Galerkin scheme differ little
from those of Fig. 4, as expected.

Next, we consider the case of b ¼ 0:7 and u ¼ 14:5 (Fig. 6), corresponding to a system just after
the second jump in the stability diagram (Fig. 2). As stated before, this jump is associated with the
advent of a new beam mode in the Fourier–Galerkin mode. In Fig. 6(a), the eigenvalue spectrum
is again dominated by two eigenvalues; the corresponding spatial profile of the POMs along with
beam are plotted in Fig. 6(b). The bar charts of the corresponding eigenvectors are shown in Figs.
6(c) and (d). The associated spatial response obtained using the 10-d.o.f. Fourier–Galerkin and 2-
d.o.f. POD-Galerkin schemes are shown in Figs. 6(e) and (f) which again show excellent
agreement. Note that the POMs in Fig. 6(b) markedly differ from those in Fig. 5(b) depicting a
case just below the second jump in the stability diagram. This phenomenon also emerges in the
eigenvectors in Figs. 6(c) and (d) which display significantly enhanced contributions of the higher
beam modes in comparison to the case in Figs. 5(c) and (d).

The case with b ¼ 0:82; a ¼ 0 and flow velocity u ¼ 15:8 (Fig. 7) presents the situation just
below the third jump in the stability diagram. The eigenvalue spectrum, corresponding POMs and
associated bar charts of the eigenvectors are shown in Figs. 7(a) and (d). The spatial response
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Fig. 4. The system with b ¼ 0:5; a ¼ 0 and u ¼ 10:6: (a) eigenvalue spectrum from semi-analytical approach; (b) first

and second POMs (—) and cantilever beam modes (-.-.-); bar chart of (c) first eigenvector; (d) second eigenvector;

temporal snapshots of spatial responses; (e) Fourier–Galerkin scheme with N ¼ 10; (f) POD-Galerkin approach with

N ¼ 2:

M.P. Pa.ıdoussis et al. / Journal of Sound and Vibration 280 (2005) 141–157 149



profile obtained through 10-d.o.f. Fourier–Galerkin and 2-d.o.f. POD-Galerkin scheme are
plotted in Figs. 7(e) and (f). Some differences between Figs. 6 and 7 can be observed. In order to
study the effect of structural damping, similar results are presented in Fig. 8 with a ¼ 10�2: The
presence of damping appears to minimize the effect of higher beam modes, as observed by
comparing Figs. 7(c), (d) and 8(c), (d). This effect also manifests itself through the alteration of the
spatial response profile in Figs. 8(e) and (f) compared to Figs. 7(e) and (f).

Next, we consider the situation with b ¼ 0:875 and a ¼ 0 (Fig. 9) just after the third and
penultimate jumps in the stability diagram associated with the peculiar case where the system is
restabilized after the first loss of stability and then becomes unstable again. The case with flow
velocity u ¼ 14:85 describes the LCO of the system after its first loss of stability shown in Fig. 2.
The eigenvalue spectrum, corresponding POMs, bar charts of the eigenvectors and spatial
response from the 10-d.o.f. Fourier–Galerkin and 2-d.o.f. POD-Galerkin schemes are plotted in
Figs. 9(a)–(f). Similar results with u ¼ 17:25 involving a LCO after the second loss of stability is
shown in Fig. 10. In both cases (Figs. 9 and 10), only two dominant POM eigenvalues are present.
However, a significant change in POMs is observed in Fig. 10(b) in comparison to Fig. 9(b). This
aspect directly manifests itself through the rearrangement of the beam mode contributions in Figs.
10(c), (d) and 9(c), (d).
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Fig. 5. The system with b ¼ 0:6; a ¼ 0 and u ¼ 11:5: (a) eigenvalue spectrum from semi-analytical approach; (b) first

and second POMs (—) and cantilever beam modes (-.-.-); bar chart of (c) first eigenvector; (d) second eigenvector;

temporal snapshots of spatial responses; (e) Fourier–Galerkin scheme with N ¼ 10; (f) POD-Galerkin approach with

N ¼ 2:
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The activation of an ever increasing number of cantilever beam modes with increasing b; as
displayed in Figs. 3–7, 9 and 10 is summarized in Table 1. In the table, ‘‘nodes’’ and ‘‘antinodes’’
are only nominal, since, because of the travelling-wave component in the mode shape [1], they are
not true nodes and antinodes. The number of modes in the diagrams (c, d) of Figs. 3–7, 9 and 10 is
the total number that is found in POMs 1 and 2 that can be seen in the bar charts.

It is seen that by all three measures used in the table, there is clearly one more mode implicated
after each jump, reinforcing thereby the findings in the earlier work by Semler et al. [8]. It is also
noted, again in agreement with Semler et al., that when damping is added, as in Fig. 8 ðb ¼ 0:82Þ
the number of nodes and antinodes drops to two, and the number of modes in (c, d) to only five.

6. Range of b over which POMs are effective

In the foregoing the efficacy of the proper orthogonal decomposition method was assessed
locally (in terms of b), in the following sense. For example, to obtain the POD results for Fig. 3
ðb ¼ 0:22Þ; the POMs were obtained from time series of the response at the same b: The same was
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Fig. 6. The system with b ¼ 0:7; a ¼ 0 and u ¼ 14:5: (a) eigenvalue spectrum from semi-analytical approach; (b) first

and second POMs (—) and cantilever beam modes (-.-.-); bar chart of (c) first eigenvector; (d) second eigenvector;

temporal snapshots of spatial responses; (e) Fourier–Galerkin scheme with N ¼ 10; (f) POD-Galerkin approach with

N ¼ 2:
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true for the results presented for each of Figs. 4–10. The efficacy of POMs obtained at one flow
velocity to predict the dynamics for different flow velocities, u (but for the same values of b and g)
was tested before [6,7], and will not be commented upon in detail here—other than to say that it
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Fig. 7. The system with b ¼ 0:82; a ¼ 0 and u ¼ 15:8: (a) eigenvalue spectrum from semi-analytical approach; (b) first

and second POMs (—) and cantilever beam modes (-.-.-); bar chart of (c) first eigenvector; (d) second eigenvector;

temporal snapshots of spatial responses; (e) Fourier–Galerkin scheme with N ¼ 10; (f) POD-Galerkin approach with

N ¼ 2:

Table 1

The number of beam modes involved in the mode shapes of the oscillating cantilever

Location relative to jumps b Number of Number of Number of modes Approx.

‘‘nodes’’ ‘‘antinodes’’ in the figures u=ucr

Before 1st jump 0.22 1 1 4 1.1

After 1st jump 0.5 2 2 5 1.2

Before 2nd jump 0.6 2 2 5 1.2

After 2nd jump 0.7 3 3 6 1.1

After 2nd jump 0.82 3 3 6+ 1.2

Before 3rd jump 0.875 3 3 6 1.1

After 3rd jump 0.875 4 4 7 1.1
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was found to be quite good, in the sense of adequately reproducing a bifurcation diagram in which
u was the varied parameter, for u; say, double the value for which the POMs were constructed.

Here we have done the same type of test for varying b: By examining the results in Figs. 3–10, it
is clear that the POMs change significantly as b is varied in this strongly coupled fluid–structure
interaction system; thus, it was not at all clear that POMs obtained from time traces at one b
would properly represent the dynamics at another b—not even being sure that the Hopf
bifurcation would be captured at this other b:

Fig. 11 shows the results of this investigation.4 It is seen in Fig. 11(b) that with POMs
obtained at b ¼ 0:25; a little below the first jump in the stability diagram, the first jump is
adequately predicted. The dynamics for higher b is qualitatively reasonably well predicted,
but quantitatively deteriorating with increasing b: Thus, whilst the Hopf bifurcation is
predicted to occur up to b-1; (1) the location of the second jump is at a higher b than it
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Fig. 8. The system with b ¼ 0:82; a ¼ 10�2 and u ¼ 15:8: (a) eigenvalue spectrum from semi-analytical approach; (b)

first and second POMs (—) and cantilever beam modes (-.-.-); bar chart of (c) first eigenvector; (d) second eigenvector;

temporal snapshots of spatial responses; (e) Fourier–Galerkin scheme with N ¼ 10; (f) POD-Galerkin approach with

N ¼ 2:

4The faint, dotted vertical lines shunting the S-shaped jumps signify that, if one were to increase b; while tracking the

Hopf bifurcation point, ucr; the curve would jump up discontinuously, as shown. This is also what is obtained

numerically if one varies b while determining ucr: If, on the other hand, one varies u while determining the equivalent bcr

for neutral stability, then the full S-curve is obtained.
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should be, (2) subsequent jumps are not predicted at all, and (3) the critical values of u are
underestimated.

Similarly, using POMs obtained between the first and second jumps, Fig. 11(c), this middle
range of b is predicted best, but the quantitative prediction of the critical u deteriorates for the
lower and higher b: Fig. 11(d) shows the results obtained with POMs from simulation after the
second jump, and it is seen that the first jump is totally obliterated.

The conclusion is that the performance of the POD method (for POMs obtained at a specific b)
as b is varied is rather mixed. This is an important conclusion, showing a much more severe
limitation of the method in terms of the mass parameter b than was obtained before [6,7] in terms
of the dimensionless velocity u:

7. Conclusion

A reduced order model of the non-linear PDE describing the dynamics of a horizontal
cantilever conveying fluid is derived using the beam modes as well as proper orthogonal modes.
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Fig. 9. The system with b ¼ 0:875; a ¼ 0 and u ¼ 14:85: (a) eigenvalue spectrum from semi-analytical approach; (b) first

and second POMs (—) and cantilever beam modes (-.-.-); bar chart of (c) first eigenvector; (d) second eigenvector;

temporal snapshots of spatial responses; (e) Fourier–Galerkin scheme with N ¼ 10; (f) POD-Galerkin approach with

N ¼ 2:
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The evolution of the proper orthogonal modes with respect to the variation of mass ratio reveals
interesting spatial coherent structures in the post-flutter dynamics which dramatically differ from
the cantilever beam modes. Depending on the mass ratio parameter, the Fourier–Galerkin scheme
necessitates a progressively higher number of degrees of freedom to obtain a converged solution
of the non-linear PDE describing the dynamics of the fluid-conveying tube. Focusing on the linear
stability diagram, it emerges that only the 2 d.o.f. POD-Galerkin model, in contrast to the up to
10-d.o.f. Fourier–Galerkin model, can consistently capture the system behaviour irrespective of
the jumps in the stability plot associated with the addition of a new beam mode in the Fourier–
Galerkin scheme.

An important conclusion reached in Section 6 is that the range of b for successful quantitative
prediction of the dynamics is rather limited, if the POMs are obtained at a specific b; bs: Without
having the 10 d.o.f. Fourier–Galerkin results to calibrate the system (in the sense of knowing
which modes, say which beam modes, are active), prediction for b substantially higher or lower
than bs is not very good quantitatively.
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Fig. 10. The system with b ¼ 0:875; a ¼ 0 and u ¼ 17:25: (a) eigenvalue spectrum from semi-analytical approach; (b)

first and second POMs (—) and cantilever beam modes (-.-.-); bar chart of (c) first eigenvector; (d) second eigenvector;

temporal snapshots of spatial responses; (e) Fourier–Galerkin scheme with N ¼ 10; (f) POD-Galerkin approach with

N ¼ 2:
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